6,163 research outputs found

    Influence of Mg, Ag and Al substitutions on the magnetic excitations in the triangular-lattice antiferromagnet CuCrO2

    Full text link
    Magnetic excitations in CuCrO2_{2}, CuCr0.97_{0.97}Mg0.03_{0.03}O2_{2}, Cu0.85_{0.85}Ag0.15_{0.15}CrO2_{2}, and CuCr0.85_{0.85}Al0.15_{0.15}O2_{2} have been studied by powder inelastic neutron scattering to elucidate the element substitution effects on the spin dynamics in the Heisenberg triangular-lattice antiferromagnet CuCrO2_{2}. The magnetic excitations in CuCr0.97_{0.97}Mg0.03_{0.03}O2_{2} consist of a dispersive component and a flat component. Though this feature is apparently similar to CuCrO2_{2}, the energy structure of the excitation spectrum shows some difference from that in CuCrO2_{2}. On the other hand, in Cu0.85_{0.85}Ag0.15_{0.15}CrO2_{2} and CuCr0.85_{0.85}Al0.15_{0.15}O2_{2} the flat components are much reduced, the low-energy parts of the excitation spectra become intense, and additional low-energy diffusive spin fluctuations are induced. We argued the origins of these changes in the magnetic excitations are ascribed to effects of the doped holes or change of the dimensionality in the magnetic correlations.Comment: 7 pages, 5 figure

    Why Is Supercritical Disk Accretion Feasible?

    Full text link
    Although the occurrence of steady supercritical disk accretion onto a black hole has been speculated about since the 1970s, it has not been accurately verified so far. For the first time, we previously demonstrated it through two-dimensional, long-term radiation-hydrodynamic simulations. To clarify why this accretion is possible, we quantitatively investigate the dynamics of a simulated supercritical accretion flow with a mass accretion rate of ~10^2 L_E/c^2 (with L_E and c being, respectively, the Eddington luminosity and the speed of light). We confirm two important mechanisms underlying supercritical disk accretion flow, as previously claimed, one of which is the radiation anisotropy arising from the anisotropic density distribution of very optically thick material. We qualitatively show that despite a very large radiation energy density, E_0>10^2L_E/(4 pi r^2 c) (with r being the distance from the black hole), the radiative flux F_0 cE_0/tau could be small due to a large optical depth, typically tau 10^3, in the disk. Another mechanism is photon trapping, quantified by vE_0, where v is the flow velocity. With a large |v| and E_0, this term significantly reduces the radiative flux and even makes it negative (inward) at r<70r_S, where r_S is the Schwarzschild radius. Due to the combination of these effects, the radiative force in the direction along the disk plane is largely attenuated so that the gravitational force barely exceeds the sum of the radiative force and the centrifugal force. As a result, matter can slowly fall onto the central black hole mainly along the disk plane with velocity much less than the free-fall velocity, even though the disk luminosity exceeds the Eddington luminosity. Along the disk rotation axis, in contrast, the strong radiative force drives strong gas outflows.Comment: 8 pages, 7 figures, accepted for publication in Ap

    Super-critical Accretion Flows around Black Holes: Two-dimensional, Radiation-pressure-dominated Disks with Photon-trapping

    Full text link
    The quasi-steady structure of super-critical accretion flows around a black hole is studied based on the two-dimensional radiation-hydrodynamical (2D-RHD) simulations. The super-critical flow is composed of two parts: the disk region and the outflow regions above and below the disk. Within the disk region the circular motion as well as the patchy density structure are observed, which is caused by Kelvin-Helmholtz instability and probably by convection. The mass-accretion rate decreases inward, roughly in proportion to the radius, and the remaining part of the disk material leaves the disk to form outflow because of strong radiation pressure force. We confirm that photon trapping plays an important role within the disk. Thus, matter can fall onto the black hole at a rate exceeding the Eddington rate. The emission is highly anisotropic and moderately collimated so that the apparent luminosity can exceed the Eddington luminosity by a factor of a few in the face-on view. The mass-accretion rate onto the black hole increases with increase of the absorption opacity (metalicity) of the accreting matter. This implies that the black hole tends to grow up faster in the metal rich regions as in starburst galaxies or star-forming regions.Comment: 16 pages, 12 figures, accepted for publication in ApJ (Volume 628, July 20, 2005 issue

    Molecular kinetic analysis of a finite-time Carnot cycle

    Full text link
    We study the efficiency at the maximal power ηmax\eta_\mathrm{max} of a finite-time Carnot cycle of a weakly interacting gas which we can reagard as a nearly ideal gas. In several systems interacting with the hot and cold reservoirs of the temperatures ThT_\mathrm{h} and TcT_\mathrm{c}, respectively, it is known that ηmax=1Tc/Th\eta_\mathrm{max}=1-\sqrt{T_\mathrm{c}/T_\mathrm{h}} which is often called the Curzon-Ahlborn (CA) efficiency ηCA\eta_\mathrm{CA}. For the first time numerical experiments to verify the validity of ηCA\eta_\mathrm{CA} are performed by means of molecular dynamics simulations and reveal that our ηmax\eta_\mathrm{max} does not always agree with ηCA\eta_\mathrm{CA}, but approaches ηCA\eta_\mathrm{CA} in the limit of TcThT_\mathrm{c} \to T_\mathrm{h}. Our molecular kinetic analysis explains the above facts theoretically by using only elementary arithmetic.Comment: 6 pages, 4 figure

    Bubbling Calabi-Yau geometry from matrix models

    Full text link
    We study bubbling geometry in topological string theory. Specifically, we analyse Chern-Simons theory on both the 3-sphere and lens spaces in the presence of a Wilson loop insertion of an arbitrary representation. For each of these three manifolds we formulate a multi-matrix model whose partition function is the vev of the Wilson loop and compute the spectral curve. This spectral curve is the reduction to two dimensions of the mirror to a Calabi-Yau threefold which is the gravitational dual of the Wilson loop insertion. For lens spaces the dual geometries are new. We comment on a similar matrix model which appears in the context of Wilson loops in AdS/CFT.Comment: 30 pages; v.2 reference added, minor correction

    Survey on the undernourished university students who tend to lack breakfast ; a proposal for a novel viewpoint for the improvement

    Get PDF
    This study investigated the current status and causes underneath the life of university students who tend to lack breakfast at a relatively high frequency, and statistical analysis on consequences leading to such lack of well-nourished eating habitat in their university life. In October 2014, self-assessed questionnaires were administered to over 150 faculty students. It contained questions about breakfast habits, time allowance for the morning class, and lunchtime setting in their high school timetable. Breakfast states were clearly separated in three groups : 68% of students regularly have breakfast throughout the weekdays, 21% students skipping the breakfast occasionally, and 11% student no habit for breakfast at all. The survey on the high school lives revealed that 70% students used to have lunch 30 min later than the lunchtime set in the university timetable, 7% of them had the lunch time even more than 1 h later. Lunchtime varies among high schools, and statistical significance was revealed (p<0.01) that schools with higher deviation scores tend have late lunch beyond 12: 30. Accordingly, university students were given directions to prepare for the timetable reform on postulation of having lunch time over one o’clock. After continuous survey on the breakfast habits during the second semester, more than 90% of students established the habit of breakfast regularly in their university lives with the improved consciousness toward well-balanced healthy breakfast contents for their higher level of education quality
    corecore